卷積神經網絡理論范文

時間:2024-03-29 15:53:27

導語:如何才能寫好一篇卷積神經網絡理論,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

卷積神經網絡理論

篇1

關鍵詞:圖像復原;盲復原;逆濾波;神經網絡復原

1 圖像退化及復原模型

1.1 圖像降質的數學模型

圖像復原處理的關鍵問題在于如何建立退化模型。假定輸入圖像f(x,y)經過某個退化系統后輸出的是一幅退化的圖像。為了方便討論, 把噪聲引起的退化(即噪聲)對圖像的影響一般作為加性噪聲考慮,這也與許多實際應用情況一致,如圖像數字化時的量化噪聲、隨機噪聲等就可以作為加性噪聲,即使不是加性噪聲而是乘性噪聲,也可以用對數方式將其轉化為相加形式。原始圖像f(x,y) 經過一個退化算子或系統H(x,y) 的作用,然后和噪聲n(x,y)進行疊加,形成退化后的圖像g(x,y)。圖像退化的過程可以用數學表達式寫成如下的形式:

g(x,y)=H[f(x,y)]+n(x,y)

n(x,y)是一種統計性質的信息下圖表示退化過程的輸入和輸出的關系,其中H(x,y)包含了退化系統的物理過程,即所要尋找的退化數學模型。

1.2 圖像的退化恢復模型

數字圖像的圖像恢復問題可以看作是:根據退化圖像g(x ,y)和退化算子H(x ,y)的形式,沿著逆向過程去求解原始圖像f(x ,y), 或者說逆向地尋找原始圖像的最佳近似估計。

2 研究背景與意義

圖像復原是數字圖像處理技術的一個重要研究方向,在現實生活中,有著非常廣闊的應用前景和市場。數字圖像處理研究很大部分是服務于數字圖像復原的,而運動模糊圖像的復原又是圖像復原中的重要課題之一,從六十年代起就有人研究它。初期研究的主要原因是對衛星所拍攝的圖像進行復原,因為衛星相對地球是運動的,所拍出的圖像是模糊的(當然衛星所拍攝圖像的模糊原因不僅僅是相對運動而造成的,還有其他原因如大氣湍流所造的模糊等等)。美國的噴氣推進實驗室(JPL)對徘徊者飛行器發回的月球照片進行了圖像恢復處理。傳統的圖像恢復方法可以很好地恢復出來原始圖像,但是需要事先知道系統的先驗知識(例如系統的點擴散函數)。在先驗知識不足的情況下,如何恢復出來原始圖像?這就需要模糊圖像盲恢復技術。根據不同的應用背景和先驗知識,大致可以兩種方法恢復兩種類型的模糊圖像,以滿足不同的應用要求。

第一種方法:如何快速恢復模糊圖像,進行適時性圖像處理?這個技術在實際生活中有著廣泛應用。

第二種方法:如何在事先不能確定模糊系統點擴散函數的情況下,恢復模糊圖像,改善圖像的質量,這就是圖像盲恢復的問題。

3 國際國內研究發展和現狀

從歷史上來看,數字圖像處理研究有很大部分是在圖像恢復方面進行的,包括對算法的研究和針對特定問題的圖像處理程序的編寫。數字圖像處理中很多值得注意的成就就是在這兩方面取得的。

在六十年代中期,去卷積(逆濾波)開始被廣泛地應用于數字圖像恢復。這一階段對模糊圖像的研究主要是把因相對運動而拍攝的模糊圖像復原過來,從而增強人們的判讀能力。早期做圖像復原研究,主要強調盡可能使模糊圖像復原到原貌,增加它的判讀性,在此發展了很多的復原方法,諸如:差分復原、維納濾波等.這些方法各有特點,較好的解決了運動模糊圖像的判讀問題,但是在應用上均有一定的限制。

雖然經典的圖象復原方法不少,但歸納起來大致可分為逆濾波法,或稱相關變換法( inv ersefiltering or t ransfo rm related techniques) 和代數方法( alg ebraic techniques) 兩種。

3.1 傳統復原法

3.1.1 逆濾波方法

逆濾波法大致有經典逆濾波法、維納濾波法、卡爾曼濾波法等. 其中,在傅立葉變換域,經典逆濾波的變換函數是引起圖象失真的變換函數的逆變換,其雖在沒有噪聲的情況下,可產生精確的復原圖象,但在有噪聲時,將對復原圖象產生嚴重的影響,雖然濾波函數經過修改,有噪聲的圖象也能復原,但它僅適用于極高信噪比條件下的圖象復原問題; 維納濾波法是通過選擇變換函數,同時使用圖象和噪聲的統計信息來極小化均方復原誤差,這雖然在一定程度上克服了逆濾波法的缺點,但是維納濾波法需要較多有關圖象的先驗知識,如需要對退化圖象進行滿足廣義平穩過程的假設,還需要知道非退化圖象的相關函數或功率譜特性等等,而在實際應用中,要獲得這些先驗知識有較大的困難,為此,Ozkan 等人在研究圖象序列的復原問題時,提出了一種解決空間和時間相關性的多幀維納濾波法,是近年來維納濾波法的新發展; 卡爾曼濾波是一種遞歸濾波方法,其雖可用于非平穩圖象的復原,但是因計算量過大,而限制了其實際應用的效果。 Wu 和Kundu 又對卡爾曼濾波方法進行了改進,不僅提高了速度,并考慮了應用于非高斯噪聲的情況; Cit rin 和Azimi-Sadjadi 也對卡爾曼濾波方法進行了改進,提出了塊卡爾曼濾波方法; Koch 等提出了擴展卡爾曼濾波( extended Kalmam filter) 復原方法,該方法可以較好地復原模糊類型不相似的退化圖象.除了上述的逆濾波方法外,還有參數估計濾波法,它實質上是維納濾波法的變種. 20 世紀90 年代初,又提出了基于遞歸圖象濾波的自適應圖象復原方法及合成濾波方法,它代表了濾波方法新的發展方向. 1998 年Kundur 等人首先明確提出了遞歸逆濾波( recursiv e inv er se filter ing ) 算法 ,2000 年Chow 等人又進行了改進,即在代價函數中增加了空間自適應正則化項,從而很好地抑制了噪聲,并減少了振鈴現象,較好實現了在低SNR 條件下的盲圖象復原. 2001 年,Eng 等人結合模糊集的概念,提出了自適應的軟開關中值濾波方法,它能在有效地去掉脈沖噪聲的同時,很好地保存圖象的細節,是一種值得重視的新的圖象復原方法。

3.1 2 代數方法

Andrews 和Hunt 提出了一種基于線性代數的圖象復原方法。這種方法可能比較適合那些相對于積分運算,則更喜歡矩陣代數,而相對于分析連續函數,又更喜歡離散數學的人的口味。它為復原濾波器的數字計算提供了一個統一的設計思路。代數方法可分為偽逆法、奇異值分解偽逆法、維納估計法和約束圖象復原方法等。 其中,偽逆法,實質上是根據圖象退化的向量空間模型來找到引起圖象退化的模糊矩陣,但由于模糊矩陣總是很大的,因此在計算上往往不可行; 而奇異值分解偽逆法則是利用矩陣可分解成特征矩陣系列的思想,將模糊矩陣進行分解,由于簡化了計算,從而有利于模糊矩陣的估計計算,但在有噪聲存在時,經常會出現不穩定的現象; 維納估計法雖然考慮了噪聲的情況,但它僅適合噪聲是二維隨機過程,且已知其期望和協方差的情況。前面的方法僅把圖象看成是數字的陣列,然而一個好的復原圖象應該在空間上是平滑的,其在幅度值上是正的,而約束圖象復原方法就是將這些因素作為約束條件,如基于維納估計法和回歸技術而提出的圖象復原方法就是一種約束圖象復原方法,而且通過選取不同的約束參數和回歸方法可以得到不同的圖象復原算法。傳統的圖象復原算法或面臨著高維方程的計算問題,或要求恢復過程滿足廣義平穩過程的假設,這就是,使得具有廣泛應用價值的圖象復原問題沒有得到圓滿的解決的根本原因。

3.2 神經網絡圖象復原的方法

神經網絡圖象復原方法的發展方向自從神經網絡圖象復原首次提出十多年來,其研究在不斷地深入和發展,描述它的現狀已屬不易,展望它的未來更是困難,況且科學研究具有不確定性. 據筆者判斷,如下諸方面是亟待解決的問題,或研究活動已有向這些方面集中的趨勢。

3. 2.1小波神經網絡用于圖象復原將是研究的重點

自1992 年Zhang 提出小波神經網絡以來,如今已提出了各種類型的小波網絡,且小波與神經網絡的結合成了一個十分活躍的研究領域。通過學者們的理論分析和模擬實驗表明: 由于小波神經網絡具有逼近能力強、可顯著降低神經元的數目、網絡學習收斂的速度快、參數( 隱層結點數和權重) 的選取有理論指導、能有效避免局部最小值問題等優點,因此將其用于圖象復原是一個值得研究的方向。將小波的時頻域局部性、多分辨性等性質,與神經網絡的大規模并行性、自學習特性等優點結合起來,不僅將使用于圖象復原的小波神經網絡具有自適應分辨性,也將使正則化參數的選取更具有自適應能力. 最終使復原圖象既能保持圖象的細節,又能很好地抑制圖象中的各種噪聲。

3.2.2細胞神經網絡、BP 網絡、自組神經網絡

值得進一步研究細胞神經網絡( CNN ) 由于其具有易于硬件實現的特點,因而具有很強的商業價值,但由于其自身還有很不成熟的地方,因此值得深入地研究. 其研究方向有: 細胞神經網絡理論基礎的進一步完善及在此基礎上建立細胞神經網絡中鄰域系統的概念; 與圖象數據局部相關性等概念結合起來研究,以建立新的圖象復原理論,形成新的圖象復原技術。BP 網絡對受污染或帶噪聲的訓練樣本,不僅能進行正確的映射,且與其純樣本仍相似。 正是BP 網絡的泛化能力強,使它在解決圖象復原問題時,可能比其他神經網絡具有更好的潛在性能。 將BP 網絡用于圖象復原是很值得進一步研究的.大家知道,人腦的學習方式是“自主的”,即有自組織和自適應的能力的,即人腦能在復雜、非平穩和有“干擾”的環境及其變化的情況下,來調整自己的思維和觀念,還能根據對外界事物的觀察和學習,找到其內在的規律和本質屬性,并能在一定的環境下,估計到可能出現的情況以及預期會遇到和感覺到的各種內容及情況。 自組織神經網絡(SONN) 正是基于人腦的這些功能而生成的,由于它具有能從輸入的數據中,揭示出它們之間內在關系的能力,因此將其用于“盲圖象”的復原將是非常有利的。

3.2.3 需要提出更適合圖象復原的新神經網絡模型

小波神經網絡是為逼近任意非線性函數而提出來的,但為了圖象復原的需要,可考慮針對圖象復原的特殊情況,提出新的神經網絡模型。 如,因為大多數圖象是由平滑區域和輪廓細節組成的,其圖象數據在平滑區域雖具有較強的相關性,但與輪廓細節相鄰的數據應極不相關,所以,提出一種專用于圖象復原的“相關性神經網絡模型”是必然的期待; 再有,因為多項式具有較廣的擬合性和較好的收斂性,所以應提出的“多項式神經網絡”,將它們用于圖象復原也是值得研究的。

3.2.4 神經網絡與其他理論的結合

研究是尋求新模型、新方法的重要途徑目前神經網絡的研究正由單純的神經計算轉向計算智能,并結合腦科學的研究向生物智能方向發展。 為此,神經網絡圖象復原的研究也應考慮吸收模糊、分形、混沌、進化計算、信息融合等交叉學科的研究成果。 與模糊系統的結合將是一個重要的研究方向,因為,神經網絡與模糊系統有如下很多的相同之處: ( 1) 它們在處理和解決問題時,無需建立對象的精確數學模型,而只需要根據輸入的采樣數據去估計其要求的決策; ( 2) 在對信息的加工處理過程中,均表現出了很強的容錯能力; ( 3) 它們都可以用硬件來實現. 由此可見,將神經網絡與模糊系統結合,用于圖象復原將是有意義的研究工作。

4 未來展望

圖像恢復發展到現在,已經有了許多成熟的算法,但是還是存在許多問題,等待著我們去解決。目前圖像恢復的最新發展有:

1. 非穩圖像復原,即空間可變圖像復原。

2. 退化視頻信號的復原問題,以及攝像機拍照圖像復原,這是一個需要進一步研究的領域。

3. 運動補償時空復原濾波,同時將時間相關應用到運動補償中。

4. “Telemedicine“的出現,遠程診斷極大的依賴于遠程接受的圖像質量,圖像恢復在醫學領域中有相當重要的作用。

5. 模糊 PSF 的 Identification 仍然是一個困難的問題,尤其在空間可變的 PSF 的估計中。

6. 空間可變恢復方法,可以利用 Wavelets 和 Markov 隨機場等方法進行復圖像恢復,這是一個具有發展潛力的研究方向。

參考文獻

1 馮久超,黃海東. 基于神經網絡的盲圖象恢復[ J ] . 計算機科學,2000,27( 1) : 67~68.

2 Er ler K,Jernigan E. Adaptive image restorat ion using recursive image f ilters [ J ] . IEE E Trans actions on Signal Process ing,1994,42( 7) : 1877~1881.